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The Propagation of Errors Formula
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In the case of the measurements being uncorrelated:

2



Recap
• Motivation:

In 4Y report -  
Good that is was attempted  
but not correct!
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Curve Fitting/Regression

• Curve fitting is the process of finding the parameters of some function so that the 
function gives the “best agreement” with experimental data.  

• For linear functions this can be done analytically using some criterion. 

• For non-linear functions the optimisation in most cases must be done numerically.  

• However, now there are numerical software packages which greatly simplify the task 

• Here, we will focus exclusively on the numerical approaches and not the analytic solutions. 
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Method of Least Squares
• The Method of Least Squares: 

• If we do not have (or ignore) error bars on measured data points, then we can apply the 
method of least squares: 

• find the parameters of the fit function which minimise the sum of the squares of the 
vertical differences between each point and the function value at that point.

S(pars) =
N

∑
i=1

[yi − f(xi, pars)]2

5



χ2 minimisation
• χ2 Minimisation (note: often confusingly also called “least squares” as well since it is so similar):  

• If we have error bars on the dependent variables (y) then we can weight each point by its error. 

• We divide the ‘vertical distance’ each point is from the fitted curve by its error, in effect we are 
calculating the number of standard errors each point is from the curve.  

• The optimum parameters for the function are the ones which minimise the sum of the standard 
errors squared (this is also know as the χ2 sum)

S(pars) = χ2(pars) =
N

∑
i=1 [ yi − f(xi, pars)

σi ]
2
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Orthogonal Distance Regression
• Advanced Topic!: for information 

• Orthogonal Distance Regression (ODR) minimised the orthogonal distance to the curve. 

• If we have errors in both x and y then there is a method known as Weighted Orthogonal Distance 
Regression (weighted ODR). 

• ODRPACK is a FORTRAN-77 library for performing ODR with possibly non-linear fitting functions. 

• Scipy has an interface to ODRPACK:  https://docs.scipy.org/doc/scipy/reference/odr.html
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Levenberg-Marquardt Minimisation
• An algorithm must be used to find the parameters which minimises the χ2 sum (or LSQ/

WODR)  

• For functions which are non-linear this is not trivial. 

• One of the most widely used and trusted algorithm is the Levenberg-Marquardt algorithm: 

• combination of gradient-descent and Gauss-Newton methods to search multi-dimensional 
space looking for minimum

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c8



Levenberg-Marquardt Minimisation

• can get stuck in a local minimum 

• may not converge if initial parameters far away from minimum 

• initial parameters somewhat close to the optimum parameters are desired (i.e. plot your 
curve with initial parameters over data first and adjust parameters before running 
method) 

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
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scipy.optimize.curve_fit() uses LM method

Arguments: 
f,                       function to be fit (callable in form: f(x,*pars)  
xdata,                   array of x data points 
ydata,                   array of y data points 
p0=None,                 initial guesses at function parameters (default: 1s)  
sigma=None,              array of uncertainties or covariance matrices (def: all 1s) 
absolute_sigma=False,    True or False: True if sigma has real errors for False               

            if relative weights (in that case errors on best-fit pars are  
            adjusted to give a reduced chi-square of 1)  

check_finite=True,       Check for infinities and nans in input array 
bounds=- inf, inf,       array of 2-tuples of lower and upper parameter bounds 
method=None,             method to use (default is ‘lm’ for unconstrained) 
jac=None,                method to calculate the Jacobian/Gradient vector 
**kwargs

Returns: 
popt,                   values of the parameters which minimised chisq sum  
pcov                    variance-covariance matrix of the fitted parameters.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
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Curve Fitting

• In general we often assume that data are not correlated and neglect the covariance terms 
(probably good to check!) 

• When we fit a theoretical model (function) to data there are uncertainties on (acceptable 
range of) the best-fit parameters. 

• The uncertainty on any value calculated using the function with best-fit parameters is 
simply standard propagation of errors.  

• However, the parameters of the model are probably quite correlated. 

• For example, consider fitting a line of the form y=mx+c.  

• The function parameters m and c are highly correlated (a change in the slope m 
(increase) will cause a change in the intercept c (decrease)). 

• The fit function is f(x,m,c) 

• with uncertainties on the parameters this becomes: f(x, m±σm, c±σc) so there is an 
uncertainty on the value f(x) due to the variances and covariances of the fit 
parameters.
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Curve Fitting
• Fitting software routines (such as SciPy’s curve_fit()) generally return the full 

variance-covariance matrix: 

• The errors on the fitted function parameters are the square root of the diagonal 
terms,  

• while the off-diagonal elements are the covariances. 

• If you are using the returned fitted parameters  in the fit function to estimate some 
quantity and its error, or a confidence region, then you must include the covariance 
terms. 
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Example: fitting a straight line to some data
def f(x,m,c): 
    return m*x+c 

popt,pcov=curve_fit(f,x,y,sigma=e,  
                    absolute_sigma=True)

popt=[ 2.43346158 4.60848392] 

pcov=[ [ 0.10909091  -0.6       ] 
       [-0.6          4.19999991] ]       

m=popt[0] 
σm=np.sqrt(pcov[0][0]) 

c=popt[1] 
σc=np.sqrt(pcov[1][1]) 

σmcsq=pcov[0][1] 

print(f"{m:.2f} ± {σm:.2f}") 
print(f"{c:.2f} ± {σc:.2f}”) 

2.43 ± 0.33 
4.61 ± 2.05

m = 2.43 ± 0.33 
c = 4.61 ± 2.05
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Example: fitting a straight line to some data

• Say for a given x, we want to use our best fit (optimum) parameters to get a corresponding value of y 
and its uncertainty using the function and its best-fit parameters. 

• i.e., f(x) = f(x, mopt±σm,opt, copt±σc,opt), so, for example, f(6)=?±? 

• Use propagation of errors using the full covariance terms:

e.g. At x=6, y=21.06 ± 0.93

popt=[ 2.43  4.61] 
pcov=[[ 0.12 -0.60] 
      [-0.60  4.20 ]]

y = mx+ c
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Example: fitting a straight line to some data

With and without covariance Extended Range

red: with covariance,  
green: without covariance
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Revisit sensitivity curve from third slide

Incorrect Correct - using covariance 
matrix of fit parameters

16



Anscombe’s Quartet
•  Anscombe's Quartet is a group of four data sets that provide a useful caution against blindly 

applying statistical methods to data.  

•  Each data set consists of ten x- and y-values such that the mean and variance of x and y, the 
correlation coefficient, regression line, and error of fit using the line are the same. But as you 
can see, they are clearly quite different data .

http://neurochannels.blogspot.ie/2008/07/anscombes-quartet.html

• Always plot and visually inspect your data 
and best-fit curve! 
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Conclusions
• Numerical routines such as scipy.optimize.curve_fit() can be used to find the optimum 

parameter for a function to best-describe a data set. 

• If you want true errors on the best-fit parameters then you must include errors on the data 
points (and tell curve_fit() to use them) 

• if errors on the data points are not used then, or just used as relative weights, the errors on 
the fit parameters returned as so that the reduced χ2 is ≈1. 

• scipy.optimize.curve_fit() returns the optimum parameters and the full covariance matrix, 
giving errors on the parameters and correlations between them. 

• If the fit function with best-fit parameters is used to calculate a value, or several to display a 
confidence interval, then the co-variance terms must be used to propagate the error on the 
parameters through the function. 

• it is critical to give starting values for the fit somewhat close to the optimum to ensure 
convergence. 

• you should always plot and visually inspect data and fitted function

18


