
Curve Fitting and
Confidence Intervals

Assoc. Prof. John Quinn

Recap

The Propagation of Errors Formula

Covariance

�2
u =

✓
@f

@x

◆2

�2
x +

✓
@f

@y

◆2

�2
y + . . .+ 2

✓
@f

@x

◆✓
@f

@y

◆
�2
xy + . . .

�2
u =

✓
@f

@x

◆2

�2
x +

✓
@f

@y

◆2

�2
y + . . .+ 2

✓
@f

@x

◆✓
@f

@y

◆
�2
xy + . . .

In the case of the measurements being uncorrelated:

2

Recap
• Motivation:

In 4Y report -
Good that is was attempted
but not correct!

3

Curve Fitting/Regression

• Curve fitting is the process of finding the parameters of some function so that the
function gives the “best agreement” with experimental data.

• For linear functions this can be done analytically using some criterion.

• For non-linear functions the optimisation in most cases must be done numerically.

• However, now there are numerical software packages which greatly simplify the task

• Here, we will focus exclusively on the numerical approaches and not the analytic solutions.

4

Method of Least Squares
• The Method of Least Squares:

• If we do not have (or ignore) error bars on measured data points, then we can apply the
method of least squares:

• find the parameters of the fit function which minimise the sum of the squares of the
vertical differences between each point and the function value at that point.

S(pars) =
N

∑
i=1

[yi − f(xi, pars)]2

5

χ2 minimisation
• χ2 Minimisation (note: often confusingly also called “least squares” as well since it is so similar):

• If we have error bars on the dependent variables (y) then we can weight each point by its error.

• We divide the ‘vertical distance’ each point is from the fitted curve by its error, in effect we are
calculating the number of standard errors each point is from the curve.

• The optimum parameters for the function are the ones which minimise the sum of the standard
errors squared (this is also know as the χ2 sum)

S(pars) = χ2(pars) =
N

∑
i=1 [yi − f(xi, pars)

σi]
2

6

Orthogonal Distance Regression
• Advanced Topic!: for information

• Orthogonal Distance Regression (ODR) minimised the orthogonal distance to the curve.

• If we have errors in both x and y then there is a method known as Weighted Orthogonal Distance
Regression (weighted ODR).

• ODRPACK is a FORTRAN-77 library for performing ODR with possibly non-linear fitting functions.

• Scipy has an interface to ODRPACK: https://docs.scipy.org/doc/scipy/reference/odr.html

7

https://docs.scipy.org/doc/scipy/reference/odr.html

Levenberg-Marquardt Minimisation
• An algorithm must be used to find the parameters which minimises the χ2 sum (or LSQ/

WODR)

• For functions which are non-linear this is not trivial.

• One of the most widely used and trusted algorithm is the Levenberg-Marquardt algorithm:

• combination of gradient-descent and Gauss-Newton methods to search multi-dimensional
space looking for minimum

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c8

Levenberg-Marquardt Minimisation

• can get stuck in a local minimum

• may not converge if initial parameters far away from minimum

• initial parameters somewhat close to the optimum parameters are desired (i.e. plot your
curve with initial parameters over data first and adjust parameters before running
method)

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

9

scipy.optimize.curve_fit() uses LM method

Arguments:
f, function to be fit (callable in form: f(x,*pars)
xdata, array of x data points
ydata, array of y data points
p0=None, initial guesses at function parameters (default: 1s)
sigma=None, array of uncertainties or covariance matrices (def: all 1s)
absolute_sigma=False, True or False: True if sigma has real errors for False

 if relative weights (in that case errors on best-fit pars are
 adjusted to give a reduced chi-square of 1)

check_finite=True, Check for infinities and nans in input array
bounds=- inf, inf, array of 2-tuples of lower and upper parameter bounds
method=None, method to use (default is ‘lm’ for unconstrained)
jac=None, method to calculate the Jacobian/Gradient vector
**kwargs

Returns:
popt, values of the parameters which minimised chisq sum
pcov variance-covariance matrix of the fitted parameters.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

10

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

Curve Fitting

• In general we often assume that data are not correlated and neglect the covariance terms
(probably good to check!)

• When we fit a theoretical model (function) to data there are uncertainties on (acceptable
range of) the best-fit parameters.

• The uncertainty on any value calculated using the function with best-fit parameters is
simply standard propagation of errors.

• However, the parameters of the model are probably quite correlated.

• For example, consider fitting a line of the form y=mx+c.

• The function parameters m and c are highly correlated (a change in the slope m
(increase) will cause a change in the intercept c (decrease)).

• The fit function is f(x,m,c)

• with uncertainties on the parameters this becomes: f(x, m±σm, c±σc) so there is an
uncertainty on the value f(x) due to the variances and covariances of the fit
parameters.

11

Curve Fitting
• Fitting software routines (such as SciPy’s curve_fit()) generally return the full

variance-covariance matrix:

• The errors on the fitted function parameters are the square root of the diagonal
terms,

• while the off-diagonal elements are the covariances.

• If you are using the returned fitted parameters in the fit function to estimate some
quantity and its error, or a confidence region, then you must include the covariance
terms.

12

Example: fitting a straight line to some data
def f(x,m,c):
 return m*x+c

popt,pcov=curve_fit(f,x,y,sigma=e,
 absolute_sigma=True)

popt=[2.43346158 4.60848392]

pcov=[[0.10909091 -0.6]
 [-0.6 4.19999991]]

m=popt[0]
σm=np.sqrt(pcov[0][0])

c=popt[1]
σc=np.sqrt(pcov[1][1])

σmcsq=pcov[0][1]

print(f"{m:.2f} ± {σm:.2f}")
print(f"{c:.2f} ± {σc:.2f}”)

2.43 ± 0.33
4.61 ± 2.05

m = 2.43 ± 0.33
c = 4.61 ± 2.05

13

Example: fitting a straight line to some data

• Say for a given x, we want to use our best fit (optimum) parameters to get a corresponding value of y
and its uncertainty using the function and its best-fit parameters.

• i.e., f(x) = f(x, mopt±σm,opt, copt±σc,opt), so, for example, f(6)=?±?

• Use propagation of errors using the full covariance terms:

e.g. At x=6, y=21.06 ± 0.93

popt=[2.43 4.61]
pcov=[[0.12 -0.60]
 [-0.60 4.20]]

y = mx+ c

@y

@m
= x

@y

@c
= 1

�y =
p
x2�2

m + �2
c + 2x�2

mc

�2
u =

✓
@f

@x

◆2

�2
x +

✓
@f

@y

◆2

�2
y + 2

✓
@f

@x

◆✓
@f

@y

◆
�2
xy

14

Example: fitting a straight line to some data

With and without covariance Extended Range

red: with covariance,
green: without covariance

15

Revisit sensitivity curve from third slide

Incorrect Correct - using covariance
matrix of fit parameters

16

Anscombe’s Quartet
• Anscombe's Quartet is a group of four data sets that provide a useful caution against blindly

applying statistical methods to data.

• Each data set consists of ten x- and y-values such that the mean and variance of x and y, the
correlation coefficient, regression line, and error of fit using the line are the same. But as you
can see, they are clearly quite different data .

http://neurochannels.blogspot.ie/2008/07/anscombes-quartet.html

• Always plot and visually inspect your data
and best-fit curve!

17

Conclusions
• Numerical routines such as scipy.optimize.curve_fit() can be used to find the optimum

parameter for a function to best-describe a data set.

• If you want true errors on the best-fit parameters then you must include errors on the data
points (and tell curve_fit() to use them)

• if errors on the data points are not used then, or just used as relative weights, the errors on
the fit parameters returned as so that the reduced χ2 is ≈1.

• scipy.optimize.curve_fit() returns the optimum parameters and the full covariance matrix,
giving errors on the parameters and correlations between them.

• If the fit function with best-fit parameters is used to calculate a value, or several to display a
confidence interval, then the co-variance terms must be used to propagate the error on the
parameters through the function.

• it is critical to give starting values for the fit somewhat close to the optimum to ensure
convergence.

• you should always plot and visually inspect data and fitted function

18

