

Curve Fitting and Confidence Intervals

Assoc. Prof. John Quinn

Recap

The Propagation of Errors Formula

$$\sigma_{u}^{2} = \left(\frac{\partial f}{\partial x}\right)^{2} \sigma_{x}^{2} + \left(\frac{\partial f}{\partial y}\right)^{2} \sigma_{y}^{2} + \ldots + 2\left(\frac{\partial f}{\partial x}\right) \left(\frac{\partial f}{\partial y}\right) \sigma_{xy}^{2} + \ldots$$

$$\uparrow$$
Covariance

In the case of the measurements being uncorrelated:

$$\sigma_u^2 = \left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2 + \ldots + 2\left(\frac{\partial f}{\partial x}\right) \left(\frac{\partial f}{\partial y}\right) \sigma_{xy}^2 + \ldots$$

Recap

• Motivation:

Curve Fitting/Regression

- Curve fitting is the process of finding the parameters of some function so that the function gives the "best agreement" with experimental data.
- For linear functions this can be done analytically using some criterion.
- For non-linear functions the optimisation in most cases must be done numerically.
- However, now there are numerical software packages which greatly simplify the task
- Here, we will focus exclusively on the numerical approaches and not the analytic solutions.

Method of Least Squares

- The Method of Least Squares:
 - If we do not have (or ignore) error bars on measured data points, then we can apply the method of least squares:
 - find the parameters of the fit function which minimise the sum of the squares of the vertical differences between each point and the function value at that point.

$$S(pars) = \sum_{i=1}^{N} \left[y_i - f(x_i, pars) \right]^2$$

χ^2 minimisation

- χ^2 Minimisation (note: often confusingly also called "least squares" as well since it is so similar):
- If we have error bars on the dependent variables (y) then we can weight each point by its error.
- We divide the 'vertical distance' each point is from the fitted curve by its error, in effect we are calculating the number of standard errors each point is from the curve.
- The optimum parameters for the function are the ones which minimise the sum of the standard errors squared (this is also know as the χ^2 sum)

Orthogonal Distance Regression

- Advanced Topic!: for information
- Orthogonal Distance Regression (ODR) minimised the orthogonal distance to the curve.
- If we have errors in both x and y then there is a method known as Weighted Orthogonal Distance Regression (weighted ODR).
- ODRPACK is a FORTRAN-77 library for performing ODR with possibly non-linear fitting functions.
- Scipy has an interface to ODRPACK: <u>https://docs.scipy.org/doc/scipy/reference/odr.html</u>

Levenberg-Marguardt Minimisation

- An algorithm must be used to find the parameters which minimises the χ^2 sum (or LSQ/WODR)
- For functions which are non-linear this is not trivial.
- One of the most widely used and trusted algorithm is the Levenberg-Marquardt algorithm:
 - combination of gradient-descent and Gauss-Newton methods to search multi-dimensional space looking for minimum

https://towardsdatascience.com/a-visual-explanation-of-gradient-gescent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Levenberg-Marguardt Minimisation

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

- can get stuck in a local minimum
- may not converge if initial parameters far away from minimum
- initial parameters somewhat close to the optimum parameters are desired (i.e. plot your curve with initial parameters over data first and adjust parameters before running method)

scipy.optimize.curve_fit() uses LM method

<u>https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html</u>

Arguments:

f,	<pre>function to be fit (callable in form: f(x,*pars)</pre>	
xdata,	array of x data points	
ydata,	array of y data points	
p0=None,	initial guesses at function parameters (default: 1s)	
sigma=None,	array of uncertainties or covariance matrices (def: all 1s)	
absolute_sigma=False,	True or False: True if sigma has real errors for False	
	if relative weights (in that case errors on best-fit pars are	
	adjusted to give a reduced chi-square of 1)	
<pre>check_finite=True,</pre>	Check for infinities and nans in input array	
<pre>bounds=- inf, inf,</pre>	array of 2-tuples of lower and upper parameter bounds	
<pre>method=None,</pre>	<pre>method to use (default is 'lm' for unconstrained)</pre>	
jac=None,	method to calculate the Jacobian/Gradient vector	
**kwargs		

Returns:

popt,	values of the parameters which minimised	chisq sum
рсоv	variance-covariance matrix of the fitted	parameters.

Curve Fitting

- In general we often assume that data are not correlated and neglect the covariance terms (probably good to check!)
- When we fit a theoretical model (function) to data there are uncertainties on (acceptable range of) the best-fit parameters.
- The uncertainty on any value calculated using the function with best-fit parameters is simply standard propagation of errors.
- However, the parameters of the model are probably quite correlated.
- For example, consider fitting a line of the form y=mx+c.
 - The function parameters m and c are highly correlated (a change in the slope m (increase) will cause a change in the intercept c (decrease)).
 - The fit function is f(x,m,c)
 - with uncertainties on the parameters this becomes: $f(x, m\pm\sigma_m, c\pm\sigma_c)$ so there is an uncertainty on the value f(x) due to the variances and covariances of the fit parameters.

Curve Fitting

- Fitting software routines (such as SciPy's curve_fit()) generally return the full variance-covariance matrix:
 - The errors on the fitted function parameters are the square root of the diagonal terms,
 - while the off-diagonal elements are the covariances.
 - If you are using the returned fitted parameters in the fit function to estimate some quantity and its error, or a confidence region, then you must include the covariance terms.

Example: fitting a straight line to some data

13

Example: fitting a straight line to some data

$$\begin{array}{l} \operatorname{popt=[} 2.43 \quad 4.61] \\ \operatorname{pcov=[[} 0.12 \quad -0.60] \\ [-0.60 \quad 4.20 \]] \end{array} \qquad \sigma_u^2 = \left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2 + 2\left(\frac{\partial f}{\partial x}\right) \left(\frac{\partial f}{\partial y}\right) \sigma_{xy}^2$$

- Say for a given x, we want to use our best fit (optimum) parameters to get a corresponding value of y and its uncertainty using the function and its best-fit parameters.
- i.e., $f(x) = f(x, m_{opt} \pm \sigma_{m,opt}, c_{opt} \pm \sigma_{c,opt})$, so, for example, $f(6) = ? \pm ?$
- Use propagation of errors using the full covariance terms:

Example: fitting a straight line to some data

Revisit sensitivity curve from third slide

Anscombe's Quartet

- Anscombe's Quartet is a group of four data sets that provide a useful caution against blindly applying statistical methods to data.
- Each data set consists of ten x- and y-values such that the mean and variance of x and y, the correlation coefficient, regression line, and error of fit using the line are the same. But as you can see, they are clearly quite different data .

• Always plot and visually inspect your data and best-fit curve!

Conclusions

- Numerical routines such as scipy.optimize.curve_fit() can be used to find the optimum parameter for a function to best-describe a data set.
- If you want true errors on the best-fit parameters then you must include errors on the data points (and tell curve_fit() to use them)
 - if errors on the data points are not used then, or just used as relative weights, the errors on the fit parameters returned as so that the reduced χ^2 is ≈ 1 .
- scipy.optimize.curve_fit() returns the optimum parameters and the full covariance matrix, giving errors on the parameters and correlations between them.
- If the fit function with best-fit parameters is used to calculate a value, or several to display a confidence interval, then the co-variance terms must be used to propagate the error on the parameters through the function.
- it is critical to give starting values for the fit somewhat close to the optimum to ensure convergence.
- you should always plot and visually inspect data and fitted function