Curve Fitting and
Confidence Intervals

Assoc. Prof. John Quinn

Recap

The Propagation of Errors Formula

() @ e D

Covariance

2
Ou

In the case of the measurements being uncorrelated:

of of PN DLy
2 2 2
Ou = (833) Tz F (6y> Ty T H 2 \ O 7\ Oy

Recap

* Motivation:

0.025] | Sensitivty S:alllbr?tlon Curve

I T

0.020

Sensitivity (V/W)
o
o
&

0.010F In 4Y report -
Good that is was attempted
but not correct!

*920 120 -100 80 60 —40 -20 0 20

Temperature (C)

Curve Fitting/Regression

Curve fitting is the process of finding the parameters of some function so that the
function gives the "best agreement” with experimental data.

For linear functions this can be done analytically using some criterion.
For non-linear functions the optimisation in most cases must be done numerically.
However, now there are numerical software packages which greatly simplify the task

Here, we will focus exclusively on the numerical approaches and not the analytic solutions.

Method of Least Squares

* The Method of Least Squares:

« If we do not have (or ignore) error bars on measured data points, then we can apply the
method of least squares:

* find the parameters of the fit function which minimise the sum of the squares of the
vertical differences between each point and the function value at that point.

Least-Squares curve fitting

12 -

10 -

N
S(pars) = Z [y,- — f(x;, par S)]2
i=1

72 minimisation

* x2 Minimisation (note: often confusingly also called "least squares” as well since it is so similar):

If we have error bars on the dependent variables (y) then we can weight each point by its error.

We divide the 'vertical distance’ each point is from the fitted curve by its error, in effect we are
calculating the number of standard errors each point is from the curve.

The optimum parameters for the function are the ones which minimise the sum of the standard
errors squared (this is also know as the x2 sum)

x? curve fitting

N |
| 1 . — f(x., pars
? S(pars) = y*(pars) = E Yi = J %, pars)

! 0]
10) "/ l:l B ! _

Orthogonal Distance Regression

Advanced Topicl: for information
Orthogonal Distance Regression (ODR) minimised the orthogonal distance to the curve.

If we have errors in both x and y then there is a method known as Weighted Orthogonal Distance
Regression (weighted ODR).

ODRPACK is a FORTRAN-77 library for performing ODR with possibly non-linear fitting functions.
Scipy has an interface fo ODRPACK: https://docs.scipy.org/doc/scipy/reference/odr.hitml

ODR Weighted ODR

12 1

10 -

https://docs.scipy.org/doc/scipy/reference/odr.html

Levenberg-Marquardt Minimisation

* An algorithm must be used to find the parameters which minimises the 2 sum (or LSQ/
WODR)

For functions which are non-linear this is not trivial.

* One of the most widely used and trusted algorithm is the Levenberg-Marquardt algorithm

« combination of gradient-descent and Gauss-Newton methods to search multi-dimensional
space looking for minimum

:
\ \ =) _-1 A
o R
\ - \ ! A "-——'n
G S W, o e
\ - \ \ \) ‘~' ".
\ A At
- . A .
'~‘ '-I \ \
e s W
\ \ .
1 : ! 5
W W B

.-E-‘
T
-1_‘
-:l—__

\i

A
ol
ot
A
o
|

BN

W W B
o |

\

L
e

L LA

.
\

\
A
.

\ \

il i

prr .
R A e R

= il A -

https://towardsdatascience.com/ a-visual—expIana’rion—of—gmdiem‘—gescem‘—me‘rhods—momem‘um—adagr'ad—rmsprop-adam—f898b102325c

Levenberg-Marquardt Minimisation

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c¢

can get stuck in a local minimum
may not converge if initial parameters far away from minimum

initial parameters somewhat close to the optimum parameters are desired (i.e. plot your
curve with initial parameters over data first and adjust parameters before running

method) .

scipy.optimize.curve_fit() uses LM method

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve fit.html

Arguments:
f, function to be fit (callable in form: f(x,*pars)
xdata, array of x data points
ydata, array of y data points
p0=None, initial guesses at function parameters (default: 1s)
sigma=None, array of uncertainties or covariance matrices (def: all 1s)
absolute_sigma=False, True or False: True if sigma has real errors for False
if relative weights (in that case errors on best-fit pars are
adjusted to give a reduced chi-square of 1)
Returns:
popt, values of the parameters which minimised chisqg sum
pcov variance—-covariance matrix of the fitted parameters.

10

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

Curve Fitting

In general we often assume that data are not correlated and neglect the covariance terms
(probably good to check!)

When we fit a theoretical model (function) to data there are uncertainties on (acceptable
range of) the best-fit parameters.

The uncertainty on any value calculated using the function with best-fit parameters is
simply standard propagation of errors.

However, the parameters of the model are probably quite correlated.
For example, consider fitting a line of the form y=mx+c.

« The function parameters m and c are highly correlated (a change in the slope m
(increase) will cause a change in the intercept c (decrease)).

« The fit function is f(x,m,c)

« with uncertainties on the parameters this becomes: f(x, m+on, c+oc) so there is an
uncertainty on the value f(x) due to the variances and covariances of the fit
parameters.

i Curve Fitting

v/

» Fitting software routines (such as SciPy's curve_fit()) generally return the full
variance-covariance matrix:

* The errors on the fitted function parameters are the square root of the diagonal
terms,

» while the off-diagonal elements are the covariances.

 If you are using the returned fitted parameters in the fit function to estimate some
quantity and its error, or a confidence region, then you must include the covariance

terms.

Example: fitting a straight line to some data

| | | | def f(x,m,c):
30 + } - return mxx+c
25 | } ! popt,pcov=curve_fit(f,x,y,sigma=e,
absolute_sigma=True)
20 | :
5] { M popt=[2.43346158 4.60848392]
ol + d pcov=[[0.10909091 -0.6]
{ [-0.6 4.19999991] |
Iy |
0 1
0 2 4 B 8 10
35
m=popt [0] -
om=np.sqrt(pcov[0] [0]) ‘
c=popt[1] o
oc=np.sqrt(pcov([1] [1]) ol
mcsq=pcov (0] |1
omcsg=pcov [0] [1] sl
print(f"{m:.2f} + {om:.2f}")
print(f"{c:.2f} + {oc:.2f}") 10
2.43 = 0.33 >
4.61 + 2.05
0

Example: fitting a straight line to some data

popt=[2.43 4.61] OFf 2 Of f f
=[[0.12 -0.60] 2 _ | L 2 v 9 9
e e o= () e (5) e (5) (5)

* Say for a given x, we want to use our best fit (optimum) parameters to get a corresponding value of y
and its uncertainty using the function and its best-fit parameters.

* i.e., f(x) = f(X, Mopt+Om opt, Copt*Tcopt), SO, for example, f(6)=2+?

* Use propagation of errors using the full covariance terms:

35
Y =1mx-—+c T
30}
ay ay 25}
— = — =1
om dc 5ol
15}
Oy — \/x20%1+0-(23+2x0-72nc 10k
5L
e.g. At x=6, y=21.06 + 0.93 0

Example: fitting a straight line to some data

With and without covariance Extended Range

' red: with covariance,
green: without covariance

10

Revisit sensitivity curve from third slide

Sensitivty Callibration Curve

0.025 , . 0.024 . . | | | |
Incorrect 0005 COrrect - using covariance
ol | o020} matrix of fit parameters
_ " 0.018} /
s
2 0.016
£ 0.015
% * 0.014
" 0.012}
0.010}
0.010}
0.008 | :
*
0003 0 —120 —100 80 60 —40 —20 0 20 40 0.006

-140 -120 -100 -80 -60 —-40 -20 0 20

Temperature (C)

Anscombe's Quartet

e Anscombe's Quartet is a group of four data sets that provide a useful caution against blindly
applying statistical methods to data.

e Each data set consists of ten x- and y-values such that the mean and variance of x and y, the
correlation coefficient, regression line, and error of fit using the line are the same. But as you
can see, they are clearly quite different data .

Anscombe’s Quartet

1 Set1 1 Set2

e Always plot and visually inspect your data
and best-fit curvel

http://neurochannels.blogspot.ie/2008/07/anscombes-quartet.html

Conclusions

Numerical routines such as scipy.optimize.curve_fit() can be used to find the optimum
parameter for a function to best-describe a data set.

If you want true errors on the best-fit parameters then you must include errors on the data
points (and tell curve_fit() to use them)

* if errors on the data points are not used then, or just used as relative weights, the errors on
the fit parameters returned as so that the reduced 2 is *1.

scipy.optimize.curve_fit() returns the optimum parameters and the full covariance matrix,
giving errors on the parameters and correlations between them.

If the fit function with best-fit parameters is used to calculate a value, or several to display a
confidence interval, then the co-variance terms must be used to propagate the error on the
parameters through the function.

it is critical to give starting values for the fit somewhat close to the optimum to ensure
convergence.

you should always plot and visually inspect data and fitted function

