g (Computer) Matrix
Methods for
Propagation of Errors

John Quinn

Recap: Propagation of Errors

> (9f of S Y\ 2
0“_<35L‘) oo +(3y) vt +2(3$> (33/)0 i

The Propagation of Errors Formula

Function of two variables: u=f(x,y):
o\’ o\’ o\ (of
03=<— oi+|—)og+2|—) =)0
ox dy ox dy

Function of three variables: u=f(x,y,z):

2
3=(if> . +(af> +(‘3f) 2+2(f) <a—f>afy+2<a—f> (ﬁ)ﬂé+2(af
0x dy 02 0x dy 0x 07 dy

Recap: Errors on value from best-fit function

 Propagate errors (and covariances) on best-fit values 3
through the function parameters to calculate the 30|

uncertainty on f(x, pars). 55|

« eg. linear: 2o
15F
y=fx,m,c)=mx+c

10f

best-fit m and ¢ obtained from fit. sl
2 0 L I I I I
yto, =fx,m,c) £ O'f(x, m,o,, C, 0., 0, 0 2 4 6 8 10

0.022-

. 0.020

* e.g. quadratic: 0.018}
0.016}
y =f(x,a,b,c) = ax’>+ bx +c 0.014}

0.012f

best-fit a, b and ¢ obtained from fit. 0.010l

0.008

_ 2 2 2
y*o,=fxa,b,c)xo/x,a,0,Db,0pc,0,0,,04 0}) 0.006 1 1 1 1 1 1 1 1
-140 -120 -100 -80 -60 -—-40 -20 0 20 40

Recap: Vector Notation

a8,y -+ 0) = fay) + 500+ T oy

 For multiple variables (using vector notation):

f(x) is scalar function of

F(x+406x) ~ f(x) +g(x) 0x +... several variables (passed

as a vector).

where o _ _
X = g(x) = 0X =
Ty -86;fn | Oy, |

g(x) is the Gradient vector (also called the Jacobian)

Matrix Notation

« Software packages usually return the covariance matrix of the form:

) 2 2 2
011 012 013 ... O7p
2 2 2 2
021 032 023 ... 09y
2 2 2 2
C=10931 032 033 ... O3y
2 2 2 2
Uml 0m2 0m3 Umn

« Writing out (and coding) the full propagation of errors formula can get unwieldy.

* However, the full propagation of errors formula including all of the covariance terms
can conveniently be written in matrix notation:

o2 = g(x)' Cg(x)

u

recall that g(x) is the gradient/Jacobian vector

J. Phys. Chem. A 2001, 105, 3917—3921 3917

Statistical Error Propagation

Joel Tellinghuisen®

Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235
Received: September 26, 2000; In Final Form: February 1, 2001

The simple but often neglected equation for the propagation of statistical errors in functions of correlated
variables is tested on a number of linear and nonlinear functions of parameters from linear and nonlinear
least-squares (LS) fits, through Monte Carlo calculations on 10*—4 x 10° equivalent data sets. The test examples
include polynomial and exponential representations and a band analysis model. For linear functions of linear
LS parameters, the error propagation equation is exact. Nonlinear parameters and functions yield nonnormal
distributions, but their dispersion is still well predicted by the propagation-of-error equation. Often the error
computation can be bypassed by a redefinition of the least-squares model to include the quantity of interest
as an adjustable parameter, in which case its variance is returned directly in the variance-covariance matrix.
This approach is shown formally to be equivalent to the error propagation method.

Introduction

Perhaps one of the “best-kept secrets” in experimentalj

physical science is the simple matrix expression for error
propagation' 3

0f2=gTVg (I)J

in which o/ represents the variance in some function f of a set
of parameters B, whose variance-covariance matrix is V, with

the ith element in the vector g being 3f/38;. To be sure,

undergraduate chemistry and physics students are drilled in the

form of this equation that applies for uncorrelated variables:

2
oF = 2(%) o)’ @

uted, with variances (the diagonal elements of V) known exactly
at the outset:' 37

V=A" (3)

where A is the matrix of the normal equations. Accordingly,
linear functions of such parameters are unbiased and normal,
with variances of known exactly. On the other hand, nonlinear
parameters and nonlinear functions of linear parameters are not
rormally distributed and in fact are usually biased.” Neverthe-
less, for the cases examined here, this nonnormality seldom
translates into a serious deficiency in the predictions of eq 1
and its “normal” interpretation for establishing confidence limits.
Indeed, the 10% “rule of thumb” suggested for nonlinear LS

parameters’ seems also to apply to functions of such param-
otere: If the relative ctandard error adf ic <1/10 confidence

Function of two variables: u=f(x,y):

Check using matrix calculations:

of
T o of oy ny ox
g(x) Cg(x) = [a a_y] of

2
ny 0.

_[ﬁ2+ﬁ2 I Y

= |l T % % T

o (o 7) 7)
_ Y lg+ig>+i
ox \ Ox dy dy

ORIt
"\ /) ™ ox / \ dy K
2 2
(e (2o
ox) ay) ”

“(3)

a_f> <0_f
0x dy

2
2

0
ﬁ:(l
0x
ki
ox
g(x)=| 5
ay
of
ox
of
ay
0 0
—fofy + —foy2>
0x dy

Yy

o
)

2

0.

Xy

o

) (

f

o\ 2
0

of
ay

)

62+ 2

y

2
Xy

O

(

of
0x

)

of
ay

)

2
Xy

How does this help?

« How does this help matters?

* ans:
- software packages such as numpy will to matrix multiplication for us.

* easy to incorporate all covariance terms

Error on Area using Matrix Approach in Python

o2 = g(x)' Cg(x)

Python>=3.5: Matrix Multiplication of 2D arrays with '@"

Steps:
1. Make a function which returns the gradient (column) vector (e.g. area
calculation) def griw,1):
dAdw=1
dAdl=w

return np.array([[dAdw], [dAdl]])

2. If we have the covariance matrix, C, for the measurements of width (w) (mean width = mw) and
length (/) (mean length = ml) then the error on the area (A = mw X ml) is:

oA=np.sqrt(float(gr(mw,ml).T @ C @ gr(mw,ml)))

The Matrix Method gives the exact same results as:

A\ , [0A\® , 0A\ [0A\
op=All—) oo+|—=) o7+2(— || =)o
ow ol ow ol

and is much easier to scale to 3 or more parameters! 9

Revisit Example: fitting a straight line to data

35

+H

20 |

15}

|
T

m=popt [0]
om=np.sqrt(pcov[0] [0])

c=popt[1]
oc=np.sqrt(pcov(1] [1])

omcsqg=pcov[0] [1]

print(f"{m:.2f} * {om:.2f}")
print(f"{c:.2f} * {oc:.2f}")
2.43 + 0.33
4.61 = 2.05

def f(x,m,c):
return mxkx+c

popt,pcov=curve_fit(f,x,y,sigma=e,

absolute_sigma=True)

popt=[2.43346158 4.60848392]

pcov=[[0.10909091 -0.6]
[-0.6 4,19999991]]

35

25t

20

15}

10 |

10

Example: fitting a straight line to some data

popt=[2.43 4.61] Of of f f
ocov=[[0.12 -0.60] 2 _ (2L 4 242 2
" 0l60 4.20 1 T (556> % (3?/) (31’) (&U)

* Say for a given x, we want to use our fit to get a value of y and its uncertainty.
- ie,y*o,=f(x,m,c)xo/x,m,o0,,c,0o, anzw), so, for example, f(6)=2+?
* Use propagation of errors using the full covariance terms:

y = mz + ¢ oy = g(x)" Cg(x)

def gr(x,m,c):
dfdm=x
oy 9% _, dfdc=1
om " e return np.array([[dfdm], [dfdc] 1)
_ \/xzagn + 02 + 2z02, e.g., what is error on f(6)?

np.sqrt(float(gr(6,m,c).T @ pcov @ gr(6,m,c)))
e.g. At x=6,y=21.06 + 0.96 0.96

Using the Matrix Approach for arrays

np.sqrt(float(gr(6,m,c).T @ pcov @ gr(6,m,c))

0.96

* The above will not work vectorised on numpy arrays of data for x! (needs cleverer coding!).
* Instead do element by element (e.g. list comprehension or loop)

* To do many values (i.e. x is a humpy array) using list comprehension:
s2=np.array([float(gr(z,m,c).T @ pcov @ gr(z,m,c)) for z in x])

* or use a loop!

Revisit sensitivity curve

Sensitivity (S)

0.024

0.022

0.020

0.018

0.016

0.014

0.012

0.010

0.008

0.006

S=aTl

24 bT+c

Temperatures (already loaded)
Sensitivites (already loaded)

wn -

. def F(T,a,b,c):
return axTxx2 + bxT + C

popt,pcov=curve_fit(F,T,S)

i plt.plot(T,S,"%x")
plt.plot(T,F(T,*popt))

-140 -120 -100 -80 -60

Temperature (C)

def gr(T,a,b,c):

dfda=T*x2
dfdb=T
dfdc=1

return np.array([[dfdal, [dfdbl, [dfdc]])

—40

40

es=[np.sqrt(float(gr(Ti,*popt).T @ pcov @ gr(Ti,*popt))) for Ti in TI

upper=F(T,*popt)+es
lower=F(T,*popt)-es

plt.fill_between(T,upper, lower, facecolor="'red',alpha=0.5);

Revisit sensitivity curve

Equivalent:

np.sqrt(float(gr(Ti,*popt).T @ pcov @ gr(Ti,*popt)))

Conclusions

« Computer packages such as np.cov() and scipy.optimize.curve_fit() return the full variance-
covariance matrix.

* The matrix method for propagating errors:

ol = g(x)' Cg(x)

is completely equivalent to the standard propagation of errors formula but much more
convenient for propagating error including the full covariance terms on a computer.

« Even though we generally neglect covariances of measurements, if we want o estimate the
uncertainty on a value calculated with a function which has uncertainties on its parameters
(e.g. if those parameters were derived from fitting the function to data) then we must
include the covariance terms as it is likely there is strong correlations between the
parameters.

