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Measurement Errors & Distributions
• Statistical (or Random) Errors:  

• we cannot measure any physical quantity with infinite precision - there is always some 
uncertainty on a measurement. 

• when an experiment is repeated several times we find that we do not get the exact same 
answer each time but that the values fluctuate about some mean. 
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Measurement Errors & Distributions
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• Instrumentation Precision: 

• Analogue: The statistical error associated with analogue 
instrumentation is often due to how well one can read the scale, 
and it is often up to the experimenter to estimate. 

• Digital Meter: Guide: the precision of a digital meter is limited 
to the last digit.  

• e.g. repeated measurements of a voltage with a digital 
multimeter gives 8.41 V. We would thus quote the voltage as 
8.41 ± 0.01 V. 

• ADC: resolution limited by number of bits, i.e. range divided by 
2N where N is the number of bits. 

• Other: instrumentation documentation 

• Non-instrumental: 

• Environmental etc, beyond precision of instrument.

(from Hughes & Hase book)



Measurement Errors & Distributions
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• Measurement Probability Distributions 

• We assume statistical errors follow a probability distribution (usually Gaussian) 

• If we know the distribution (ie. the parameters) then we can estimate the most likely value of a 
parameter and give a confidence interval on that estimate. 

• However, we more-than-likely do not know the true parameters which determine the distribution and 
these are often derived from the measurements themselves, or properties of the instrumentation. 

• The real world is complicated! 

• All models are wrong, some are useful!

https://en.wikipedia.org/wiki/All_models_are_wrong


Statistical and Systematic Errors
• Systematic and Non-Statistical Errors are not random fluctuations but additional uncertainties 

due to incomplete/imperfect/incorrect knowledge of experiment/calibration etc.  

• Not easy to detect and correct. 

• Generally lumped together into the term “Systematics”

• In general when we quote errors on a quantity they are the Statistical Errors. 

• Non-Statistical/Systematic Errors may be quoted in addition:  

• x=1.0 ± 0.1stat ± 0.2sys 
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• Mistakes! 

• Mistakes happen including instrument malfunction and human error. 

• Can be difficult to catch 

• Sometimes with catastrophic results.



Probability Distributions
• There are lots of probability distribution functions!  

• See, e.g.: https://docs.scipy.org/doc/scipy/reference/stats.html

• Normal/Gaussian distribution (continuous):  

• errors generally assumed to follow  

• Student’s t (continuous): 

• comparing measured mean to expected using measured standard deviation 

• Poisson (discrete):  

• number of discrete events in an interval 

• Binomial Distribution (discrete) 

• χ2 (continuous):  

• distribution of sum of normally-distributed deviates squared  

• used to test agreement between data and model or different data sets.

• Common probability distributions in Experimental Physics:
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The Gaussian (Normal) Distribution
• Statistical Errors tend to follow a Gaussian Distribution

where: 

• PDF(x) dx is the probability of obtaining a 
value between x and x+dx 

• µ is the mean (centre) of the distribution 

• σ is the standard deviation and 
characterises the width of the 
distribution 

• normalised: area =1.

PDF(x) dx =
1

σ 2π
e− 1

2 ( x − μ
σ )2

dx

Standard Normal:  µ=0, σ=1

Note: for data:        and     μ = x̄ =
1
N

N

∑
i=1

xi σ =
∑N

i=1 (xi − x̄)2

N − 1
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(if deriving the mean and the variance from the data)



The Gaussian/Normal Distribution
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The Gaussian/Normal Distribution
Two-dimensional Gaussian:
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loc=μ
scale=σ

Scipy.stats Distributions
• Scipy.stats contains many statistical functions with a common naming structure for the member 

functions (inheritance). 

• e.g. scipy.stats.norm: (some of member functions):

PDF(x)

CDF(x)=∫
x

−∞
PDF(x) dx SF(x)=  = 1-CDF(x)∫

∞

x
PDF(x) dx
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rvs(loc=0, scale=1, size) random variates

pdf(x, loc=0, scale=1) probability density function*

cdf(x, loc=0, scale=1) cumulative distribution function 
(CDF)

ppf(q, loc=0, scale=1) percent point function  
(inverse of CDF)

sf(x, loc=0, scale=1) survival function (SF)

isf(q, loc=0, scale=1) inverse survival function

expect(fun, args, …) expectation value of a function

interval(alpha, loc=0, 
scale=1)

Endpoints of the range around 
the median that contains alpha 

percent of the distribution

* for discrete distributions pdf() is replaced with pmf()

https://docs.scipy.org/doc/scipy/reference/stats.html


Example: scipy.stats.norm()
• Note: there are two ways to use:

from scipy.stats import norm 

mean=10 

std=5 

x=8 

p=norm.pdf(x, loc=mean, scale=std) 

cd=norm.cdf(x, loc=mean, scale=std) 

sf=norm.sf(x, loc=mean, scale=std) 

isf=norm.isf(sf, loc=mean, scale=std) 

from scipy.stats import norm 

mean=10 

std=5 

# make an instance of the class 

# with specified mean and std 

norm1=norm(loc=mean, scale=std)       

x=8 

p=norm1.pdf(x) 

cd=norm1.cdf(x) 

sf=norm1.sf(x) 

isf=norm1.isf(sf)

or
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Example 3.2.2 Hughes and Hase
• A box contains 100 Ω resistors that are known to have a standard deviation of 2 Ω. 

• (A): What is the probability of selecting a resistor of value 95 Ω or less? 

• (B): What is the probability of selecting a resistor in the range 99-101 Ω?
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norm.cdf(95, loc=100, scale=2) 

0.0062

• (A):  P(R ≤ 95 Ω) = ∫
95

−∞
N(x; μ = 100, σ = 2) dx

• (B):  P(99 ≤ R ≤ 101 Ω) = ∫
101

99
N(x; μ = 100, σ = 2) dx

norm1=norm(loc=100, scale=2) 

norm1.cdf(101) - norm1.cdf(99) 

0.38

 is the Normal PDF 
with mean  and standard 
deviation 

N(x; μ, σ)
μ

σ



The Gaussian (Normal) Distribution

+1σ +3σ+2σ0-1σ-2σ-3σ

• If we know the mean and standard deviation for a set of measurements (or technique), what is the 
probability that a measurement will fall in a given range?
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def frac(sigma): 

    """Return fraction of norm within ± sigma""" 

    return norm.cdf(sigma)-norm.cdf(-sigma) 

for s in range(1,5): 

    print(f"Fraction within {s} sigma: {frac(s):.5f}") 

Fraction within 1 sigma: 0.68269 
Fraction within 2 sigma: 0.95450 
Fraction within 3 sigma: 0.99730 
Fraction within 4 sigma: 0.99994

99.7%

68.3%

95.5%

~1 in 3 outside of range

~1 in 20 outside of range

~1 in 400 outside of range



Parent and Sample Distributions
• In general we do not know the true (parent) distribution from which our measurements are drawn 

and we must estimate those from the data (the sample)
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σparent = lim
N→∞

∑ (xi − μ)2

Nparent
μ = lim

N→∞

1
N ∑

i

xi

• Our best estimates of the parent population parameters ( , ) are the sample mean and 
sample variance:

μ σparent

σsample =
∑ (xi − μ)2

Nsample − 1μ =
1
N ∑

i

xi

Use N-1 when mean, µ, derived from the data



The Mean and Its Error
• The more measurements of a quantity we take the more precisely we can characterise the 

distribution (and get closer to the parent distribution)
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The Mean and Its Error

• What does this distribution tell us? 

• The probability of getting a given value in a single measurement. 

• What is the uncertainty on the mean? 

• We know the mean much more accurately than to within  ± 1σ! 

• Using Propagation of Errors it is possible to show:

If N data points are averaged to get a value, the error on that value is not the standard deviation 
(error)  of the distribution but  (“the standard error on the mean”)σ σ/ N
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σμ =
σ

N



Averaging reduces the error
• The best way to obtain the best estimate of a value and reduce the uncertainty is to average  many 

points.
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10,000 random points from a 
Normal distribution (mean=10.0, 
std=1.0) were simulated 
(distribution of values shown in 
top left plot).  

These were then grouped in 2s, 5s 
and 10s and the distribution of 
the means of those groups is 
shown in the other three figures.



Averaging reduces the error
• The simulation has 10,000 data points, from a Normal distribution with parent population 

parameters =10.0, =1.0, 

• The 10,000 points were subdivided into groups of different sizes,  the groups averaged, and the 
distribution of the means (averages) investigated.

μ σ
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# points in each 
group 
(M)

# means  
(i.e. # groups) 

(N)

σmeans  

(calculated from 
histogram)

σmeans  

(expected)  
(=σparent/√M) 

σmean 

(=σmeans /√N)  
(calculated)

1 10,000 0.99 1.00 0.01

2 5,000 0.70 0.71 0.01

5 2,000 0.46 0.45 0.01

10 1,000 0.33 0.32 0.01

10,0000 1 - 0.01 0.01

Width of Distribution of Means
Uncertainty on 
overall mean



The Weighted Mean and Its Error
• If we have a set of measurements taken with different uncertainties (e.g. we improve the technique 

or apparatus part of the way through), then we can combine the data using the following formulae:

µ =
�

(xi/⇥2
i )�

(1/⇥2
i )

�2
µ =

1�
(1/�2

i )

“Weighted Mean”

“Error on the 
Weighted Mean”
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Comparing Experimental Results with an Accepted Value

• Calculate how many multiples of the standard error (i.e. σ) 
the measured value is away from the accepted value:
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measured − expected
standard error

Values: 

• Up to 1:   excellent agreement 

• 1-2:         good agreement 

• >3:           measurements are in disagreement

• Note: caution is needed if the standard error is derived from a small number of 
measurements - see later slide on Student’s t-distribution!



Placing Confidence Limits on a Parameter
• In the physical sciences 1  is commonly used for the confidence region but in other areas of science 

95% is common. 

• If we know the mean and standard error we can then place limits at any given confidence level ( ) on 
the value of a parameter:

σ

α
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∫
+x

−x
PDF(x) dx = α

• We can use the inverse survival function to find the 
value of  which gives x

∫
+∞

x
PDF(x) dx =

1 − α
2

alpha=0.95 

x=norm.isf((1-alpha)/2) 

print(f"95% confidence limit: {x:.3f}”) 

95% confidence limit: 1.960

• Now the 95% limit on the parameter can be quoted as: x̄ ± 1.960 ×
σsample

N

• Note: caution is needed if the standard error is derived from a small number of measurements - 
see later slide on Student’s t-distribution!

• Find the limits on the integration of the standard 
normal distribution to give the appropriate confidence 
level:



Student’s t-Distribution
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• The z-statistic is expected to be normally distributed.

• However, if the mean and the error are derived from a small number of data points then they can be 
both be subject to random fluctuations which results in the t-statistic having larger deviations from 
the mean than expected from the normal distribution. 

t =
x̄ − expected

σsample

N

• We previously checked agreement between a measurement and an expected value using:

measured − expected
standard error

• If the standard error is: 

• known from parent distribution then the above number is called the z-statistic 

• derived from the data sample itself from N data points then the above number is 
called the t-statistic

z =
x̄ − expected

σparent



Student’s t-Distribution

• Simulation: 

• 10,000 points from a Standard Normal 

• group into threes and calculate mean and standard deviation of every group 

• produce histograms of z-statistic and t-statistic and compare to Normal distribution
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t =
x̄ − expected

σsample

N

z =
x̄ − expected

σparent

N



Student’s t-Distribution
• The actual distribution of the t-statistic follows a distribution known as Student’s t-distribution 

• “Student” was the pseudonym of W. Gosset who was required to publish his work on quality control of 
ingredients anonymously while working at Guinness Breweries in Dublin in 1906 - wikipedia).
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https://en.wikipedia.org/wiki/Student's_t-distribution


Student’s t-Distribution
• Student’s t-distribution has much wider tails than the normal distribution for small numbers of 

the degrees of freedom ( ) 

• and approaches the normal distribution when the number of degrees of freedom increases.  

• Due to the tails the 95% or 99% confidence limits are much larger than for a Gaussian!

ν = N − 1
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8.9 Scaling uncertainties 115

8.8 Student’s t-distribution
In Chapter 3 we discussed how to compare experimental results with an
accepted value. The analysis centred on the dimensionless quantity

t = (x̄ − µ)

α
=

√
N (x̄ − µ)

σN−1
, (8.8)

where x̄ is the best estimate based on N measurements with sample standard
deviation of σN−1, standard error α, and accepted value µ. Calculations of the
confidence limits were conducted with this parameter; for example we showed
that 99% of data points for a Gaussian distribution should have |t | < 2.58, 95%
have |t | < 1.96 and 68% have |t | < 1. However, in practice we do not know the
standard deviation of the parent distribution and we can only estimate it from
the sample distribution. For samples of finite size the confidence limit becomes
a function both of the tolerance level chosen and the number of degrees of
freedom, ν. The factors which replace the entries in Table 3.1 are known as the
Student t values, and are derived from a well-known distribution.8 When the 8W. S. Gosset published the distribution

using the pseudonym ‘Student’ in 1906 while
an employee of the Guinness brewery.

number of degrees of freedom is large, the distribution approximates well to a
Gaussian; but for fewer degrees of freedom the Student t distribution is wider
than a Gaussian. Most spreadsheets and analysis packages can calculate the
relevant factor from the desired confidence limit and the number of degrees of
freedom. The evolution of the factor for the 68%, 95% and 99% confidence
limits is shown in Fig. 8.11. The difference between the confidence limits
derived from the Student and Gaussian distributions depends on both the
confidence limit of interest and the number of degrees of freedom. For the
68% confidence limit the difference is only 5% for 10 degrees of freedom and
10% for five degrees of freedom. As we seldom quote the uncertainties to more
than one significant figure we do not have to worry about this effect unless the
number of degrees of freedom is very small. The Student probability distrib-
ution function has higher cummulative probabilities for large deviations than
a Gaussian. Thus, the importance of the t values increases as the confidence
level tends to 100%.

Fig. 8.11 The variation of the t statistic as
function of the number of degrees of freedom
for the 68%, 95% and 99% confidence limits.
As ν → ∞, the values tend to those obtained
using a Gaussian distribution (1, 1.96 and
2.58 respectively). For very few degrees of
freedom the confidence limits have to be
broadened significantly.

8.9 Scaling uncertainties
We have emphasised throughout this book that it is vital to ascertain the
magnitude of the uncertainty in the measurements, αi , and have shown how it is
possible to extract uncertainties in parameters from an analysis of the goodness
of fit. It is also possible to turn this process on its head, and learn something
about the uncertainties from the fit. There are two separate procedures which
we discuss here: (i) estimating the common uncertainty on the data points,
and (ii) scaling the magnitude of the uncertainties in fit parameters.

Both processes hinge on the concept that a ‘good fit’ will have a χ2
min ≈ ν.

Recalling the definition of the standard error, αi , as the standard deviation of
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figure 8.11 from Hughes & Hase book 

(dashed lines are expected from normal 
distribution for ~1σ, ~2σ and ~3σ)



Central Limit Theorem
• Why is the normal distribution so prevalent? 

• Ans: The Central Limit Theorem 

• Irrespective of the parent distribution 
of some variable, the distribution of the 
mean of that variable tends towards a 
normal distribution with the same mean, 
as the number of samples becomes large 
(not many needed for many ‘reasonable 
functions’!)
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Counting Experiments (Poisson Distr.) 
• When one counts the number of random events in an interval (time, area, volume, etc) and repeats 

the experiment under identical conditions then one does not always get the same result.

where, 

• P(n) is the probability of obtaining n events in a given interval  

• µ is the mean of the distribution. 

• Note: the standard deviation has value μ

• The distribution of random counted events follows a Poisson Distribution: 

P(n) =
μn e−μ

n!
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https://towardsdatascience.com/the-poisson-distribution-and-poisson-process-explained-4e2cb17d459



Counting Experiments (Poisson Distr.) 

Asymmetric! 

µ=0.6 

σ= =0.775 

It does not make sense to quote:  

We need asymmetric error bars!

0.6

0.600 ± 0.775
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Counting Experiments (Poisson Distr.) 
• For small means the distribution is asymmetric. 

• For means ≳10 the distribution is symmetric and is approximately described by a Gaussian 
distribution of mean µ and standard deviation .  μ

• For dealing with errors (especially propagation) in counting experiments we generally want enough 
counts for the Poisson distribution to be in Gaussian regime.
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Binomial Distribution
• The Binomial Distribution describes the probability of observing k successes out of n tries where 

the probability of success p. 

• the Normal distribution may be used to 
approximate the binomial distribution when 
np>>1.

e.g. tossing a fair coin 10 times - what is the 
probability of getting 0, 1, 2, ... 10 heads?

scipy.stats.binom

μ = ∑ xPB(x) σ2 = ∑ (x − μ)2PB(x)

• The distribution is described by the equation:
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https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html


Conclusions
• A crucial part of experimental science is proper evaluation and estimation of uncertainties. 

• Measurements generally have a spread and are characterised by a distribution: 

• Normal/Gaussian is most common - due to the Central Limit Theorem 

• characterised by two parameters: mean (µ) and standard deviation (σ)  

• Poisson for counting experiments  

• characterised by a single parameter: µ 

• if counts are large enough then the Poisson distribution is in the Gaussian regime (with 
mean µ and standard deviation σ=√µ) 

• Where repeated measurements are possible: 

• The best estimate of a parameter is the mean 

• The (sample) standard deviation characterises the spread in individual measurements 

• The error on the estimated parameter is the error on the mean ( )  

• We can use the probability distribution to estimate the uncertainty on a parameter at a given 
confidence level, and to test the agreement with an expected/predicted value.

σsample / N
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