The Millikan Oil-Drop Experiment

Abstract

In this experiment we repeated Millikan’s oil-drop experiment which was carried out in
1909 and which was partly responsible for his winning the Nobel prize in 1923. We
succeeded in calculating the charge on the electron.

Introduction

With the apparatus supplied it was possible to repeat Millikan’s very important
experiment of 1909 in which he established the discreteness of the electronic charge and
determined its magnitude. The charge carried by the electron is a fundamental physical
constant. Techniques employed prior to this experiment allowed scientists to deduce only
the average electron charge. Millikan was the first to show that this quantity was discrete
or single valued. For this work and that on the photoelectric effect, he was awarded the ¢
Nobel prize for physics in 1923.

In this experiment a small, charged drop of oil was observed in a closed chamber between
two horizontal, parallel plates. By measuring the velocity of fall of the drop under gravity
and its velocity of rise when the plates are at a high electrical potential difference, data
was obtained from which the charge on the drop was computed.

Theory

When no electrical field is applied the oil drop is subject to the force of gravity which is
opposed by the resistance of the viscous fluid and the buoyancy of the drop.

mg = 6manv, + 4/3 na’o g (D

Here the mass of the oil drop is m, the first term on the right is the viscous force
dependant on the terminal velocity that the oil drop reaches, v, the radius of the sphere of
the drop, a, and the viscosity of the fluid, 11, The second term on the right is the buoyancy
where o is the density of air.

When there is an applied Electric field, E, acting on a drop with charge, q, the equation
for the constant upward velocity, vg, is:

mg + 6manvg = Eq + 4/3 ma’og (2)
The term associated with the buoyancy can be eliminated between equations (1) and (2)

and writing the electric field E=V (voltage applied)/d (distance between plates) we obtain
an expression for the charge on the drop, q, [1]
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So that for the same drop and applied voltage a change in the charge q results only in a
change in the velocity vg and

Aq=cAvg (4) with ¢c=6mand/V.

If the quantities vg and v, are determined experimental, all the quantities in equation (3)
are known with the exception of the radius of the drop, a, which is given by

ZLNE) [1].

Using this expression in equation (3) and multiplying the viscosity by a correction factor
(1+b/pa)”', with b = 6.17 x 10" and p the barometric pressure in cm of mercury, yields
the corrected charge on the drop [1]:
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Experimental Procedure

The apparatus, shown in figure 1, was aligned and focussed as described in the
experimental guidelines [1]. Oil was introduced into the system and observed through the
microscope. Some time was invested in learning how to manipulate the drops using the
applied electric field.
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Figure 1: Experimental Apparatus.




The barometric pressure was recorded and found to be p = 76 cm of mercury. The
microscope was calibrated and the distance represented by each division on the
microscope scale was found. The plate separation, d, was found to be Smm and the
voltage applied to the plates, V, was 340 V.

When no electric field was applied, preliminary measurements were made by timing the
movement of a drop over different distances. Subsequently, the velocity, vg, of a
particular drop was found by timing the motion of the drop over a specific distance
(d2=0.0005m) on several occasions with no applied electric field. A similar procedure
was carried out for the motion of the same drop in the applied field in order to determine
ve. Having determined the radius of the drop using equation (5), the charge on the drop
was found using equation (6). The value of the charge on the electron (e) was then used
to determine the integer number of multiples of the charge on the electron that were
carried by the oil drop. Using this integer an experimental value for e was obtained.

Results

Figure 2 shows a plot of time taken against the distance travelled for an oil drop moving

in the absence of an applied electric field. The velocity, vg, can be seen to be constant as |~
the graph is linear and the velocity determined from the slope of the graph was found to
be 9.3 x10-5 +/- 0. 3 m/s.
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Figure 2. Time versus distance.

Subsequently, the motion of a drop over a specific distance (d2=0.0005m) was monitored
on 10 occasions both in the presence and absence of the electric field. The mean fall time
was used to determine v, and the mean rise time, in the presence of the applied electric
field, was used to determine vg.

vg was found to be 8.921E-5*m*s*-1 +/- 7.936E-6*m*s”-1 whilst
vg was found to be 1.372E-4*m*s”-1 +/- 1.019E-5*m*s”-1.

The radius of the drop was then calculated using equation (5), this was found to be 9.2 +/-
0.4 x10"-7m. This value was then used to determine the total charge on the drop,



q=9.441E-19. This is essentially 6 times the charge on the electron, giving an
experimental value for the charge on the electron of 1.573E-19 +/- 1.172E-20 C, which is
consistent with the accepted value.

Discussion

The value obtained for the charge on the electron is consistent with the accepted value of
-1

1.602 176 53(14) x 107" C. The experiment could be improved if the apparatus
was easier to use. Human etror is responsible for the difference between the experimental
value and the accepted value.

Conclusion
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iPython Notebook Millikan Oil Drop Appendix

In [1]: dimport numpy as np
- import astropy.units as units
import astropy.constants as cnts

# data from experiment

distance = np.array([1,2,3,4,5])*.0001*units.meter
time=np.array([l.2,2.5,3.4,4.5,5.6]) *units.second
.errtime=np.ones (5)*.1l*units.second

In [2]: import matplotlib.pyplot as plt

$matplotlib inline

#This part is the plot with error bars .value removes the units
x=distance.value

y=time.value
‘erry=errtime.value

#Fitting for straight line

from scipy.optimize import curve fit

def func(x, a, b):

return a*x + b

popt, pcov = curve fit(func, x, y, sigma=erry)

best=popt [0] *x+popt [1]

plt.errorbar (x,y, yerr=erry, fmt="'.")
plt.plot(x,best,'r")
plt.ylabel('time /s')
plt.xlabel ('distance /m')
plt.show ()
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The error on the velocity (which is 1/m) is oo 2l
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In [3]: errvel=np.sqrt (pcov([0,0])/popt[0]**2
- print("Velocity is {0:.3e}+/-{1:.3e} m/s.".format (1/popt[0]),errvel))

Velocity is 9.259e-05+/-2.619e-06 m/s.

This part is for the determination of Vg and vg.

In [4]: dist=.0005
riset=[3.41,3.461,3.852,3.359,3.348,3.898,4.172,3.633,3.57,3.742]
fallt=[5.762,5.43,5.16,5.652,6.148,6.313,5.711,4.781,5.051,6.039]

' averrise=np.mean (riset)
averfall=np.mean (fallt)
stdrise=np.std(riset)
stdfall=np.std(fallt)

oy/R

The unertainty on the sample mean is related to the standard deviation by: S = -\T—T

In [5]: errrt=stdrise*np.sqrt(len(riset))/np.sqrt(len(riset)—l)
2errft=stdfall*np.sqrt(len(fallt))/np.sqrt(len(fallt)—l)

The rise and fall velocities are calculated from the mean rise (fall) times: velocity = di:g_;_%cg
uncertainty on the velocity is calculated from the uncertainty in the time Avelocity = dma’:::;:c%“m

In [6]: ve=dist/averrise
- vg=dist/averfall
" errve=errrt*dist/averrise**2
" errvg=errft*dist/averfall**2
print ("VE is {0:.3e}+/-{1:.3e) m/s.". format (ve,errve))
print("Vg is {0:.3e}+/-{1:.3e} m/s.".format (vg, erxvg))

VE is 1.372e-04+/-1.019e-05 m/s.
Vg is 8.921e-05+/-7.936e-06 m/s.

,9, density of oil (alpha) and the viscosity of air (eta)
| vgu=vg*units.meter/units.second
i errvgu=errvg*units.meter/units.second
eta=1.85e-5*units.newton*units.second/units.meter**2
g=9.8*units.meter/units.second**2
‘alpha=890*units.kg/units.meter**3

a=np.sqrt (9*eta*vgu/ (2*g*alpha))

erra=np.sqrt (9*eta/ (2*g*alpha) ) *.5*errvgu/np.sqrt (vgu)

In [7]:i #In order to calculate the radius of the drop from equation 18.8, need
!
i

print ("Drop radius is {0:.3e} +/- {1:.3e} .".format(a.to('m'),erra.to(

))

Drop radius is 9.228e-07 m +/- 4.104e-08 m .
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In [8):"

#Calculation of charge &, according to equation 18.10
veu=ve*units.meter/units.second
errveu=errve*units.meter/units.second

V=340*units.Volt

sepp=.005*units.meter #Plate separation

b=6.17e-6

p=76/units.meter #These last two are not in mks units

g={ (6*np.pi*sepp) /V) *np.sqrt (Ixeta**3/(2*alpha*g)) * (1+b/ (p*a)) **-1.5* (veu+
vgu) *np.sqrt (vgu)

errqsq=((1+b/(p*a))**—1.5*np.sqrt(vgu)*errveu)**Z
errgsg=errgsqt+ ( (1+b/ (p*a)) **-1.5%.5*veu*rerrvgu/np.sqrt (vgu))
errqsq=errqsq+((1+b/(p*a))**—1.5*1.5*errvgu*np.sqrt(vgu))**2
errgsg=errqgsqt+ (1.5% (1+b/ (p*a) ) **-2.5* (b*erra/ (p*a*a)) *np.sqrt (vgu) * (veutvg
u)) **2

**2

frontfactor=(( (6*np.pi*sepp)/V) *np.sqrt (9*eta**3/(2*alpha*g)))**2
errg=np.sqrt (frontfactor*errqsq)
print ("Drop charge is {0:.3e} +/- {1:.3e} .".format(g.to('C'),errqg.to('C')

))
Drop charge is 9.441e-19 C +/- 7.029%e-20 C

Next part is to calculate the number of charges:

In [9]:

out[92]:

chargee=1.6022e-19
N=(g.value/chargee)
N

5.892413687224733

This suggests that there are 6 charges on the drop.

In [10]:

In [10]:

#Experimental Value of the charge on electron
eexp=q/6

| erreexp=errq/6

print ("The experimental value for the charge on the electron is {0:.3e} +/
- {1:.3e} .".format{eexp.to('C'),erreexp.to('C")))

The experimental value for the charge on the electron is 1.573e-19 C +/- 1
.172e-20 C




